If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+19x+x^2=0
a = 1; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*1}=\frac{-38}{2} =-19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*1}=\frac{0}{2} =0 $
| 20(x+2)=4(5x+10) | | 20n−19n=12−21 | | 0.625x+0.7=3.2 | | 1/4(8x=16)=4x | | 5+4x=53=90 | | 15=6r+5+4r | | 20(x+2)=4)5x+10) | | 10/9-5x-2=1/4-12 | | 20(x+2)=4(5x+100 | | n^2-11+22=-8 | | 2=6/7(5)+b | | 5-5n+4=-1 | | x^2+8x+3=-2x-8 | | 12(g-1)=2g+8 | | (5x+18)+52=90 | | 2(7x+2)=60 | | 2(7x+2)=60P | | 12(g-1)=2g*8 | | -31u=7.75 | | 0.710x+14+14=2.90.2x+5 | | 7x-15=(x-3) | | -b+6=b+3-3b | | 2x-x=-4 | | 10x-4=84x | | 7x+2=1/2(60) | | 7x+3x=2(3x+2x) | | 7x+2+60=180 | | 63m=20 | | 7x+2+7x+2=60 | | x+(2x)+92=180 | | 2/3b-16=0 | | -30=5x+6 |